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Abstract—Recent applications of a semidefinite programming methods [5]. It would be beneficial to pair the solution
(SDP) relaxation to the optimal power flow (OPF) problem offes  speed of mature OPF solution algorithms with the global
a polynomial time method to compute a global optimum for a optimality guarantee of the SDP relaxation. We propose a

large subclass of OPF problems. In contrast, prior OPF soluibn - . .
methods in the literature guarantee only local optimality for the sufficient condition derived from the Karush-Kuhn-Tucker

solution produced. However, solvers employing SDP relaxan (KKT) conditions for optimality of the SDP relaxation of the
remain significantly slower than mature OPF solution codesThis OPF problem [6]. A candidate solution obtained from a mature

letter seeks to combine the advantages of the two methods. InOPF solution algorithm that satisfies the KKT conditions is
particular, we develop a SDP-inspired sufficient conditiontest guaranteed to be globally optimal. However, satisfactién o

for global optimality of a candidate OPF solution. This testmay th diti . t f lobal optimalit
then be easily applied to a candidate solution generated by a €se conditons IS not necessary for global optimaiity.

traditional, only-guaranteed-locally-optimal OPF solve.

Index Terms—Optimal power flow, Global optimization 1. SUFFICIENT CONDITION FOR GLOBAL OPTIMALITY

Consider am-bus power system, wher¥ is the set of all
busesg is the set of generator buses, afids the set of all
lines. Ppy + jQpy is the load demand antd, = Vi, + j Vi

HE optimal power flow (OPF) problem determines afs the voltage phasor at busése N. Pgi + jQqr is the

optimal operating point for an electric power system igeneration at buses € G. Sj,, is the apparent power flow
terms of a specified objective function, subject to both wekw on the line(I,m) € L. Lines are modeled aH-equivalent
equality constraints (i.e., the power flow equations, whicrcuits (see [4] for more flexible models). Superscriptsasth
model the relationship between voltages and power injes}io and “min” denote upper and lower limity = G + jB is
and engineering limits (e.g., inequality constraints oftage the network admittance matrix. Define a quadratic objective
magnitudes, active and reactive power generations, and flofynction associated with each generaiorc G, typically

I. INTRODUCTION

on transmission lines and transformers). representing a variable operating cost. The OPF problem is
Recent research has applied semidefinite programming

(SDP) to the OPF problem [1]. Using a rank relaxation, th@in > (er2Péy + cr1Pak + ko) subject to (1a)

OPF problem is formulated as a convex SDP. If the relaxed *e¢

problem satisfies a rank condition, a global optimum of thB%i* < Pax < P& Vk€G (1b)

OPF problem can be determined in polynomial time. No pri@yZi® < Qar < Q& Vk €G (1c)

(_)PF_ solution m_eth(_)d guarantees calculation of th_e global sojgvk,,,i,,)z <VE VR < (Vk’“a")Q Tk N 14)

tion in polynomial time; SDP thus has a substantial advanta s

over other solution techniques. However, the rank condliti St < Sim n n v(tm) € L (le)

is not always satisfied, so the SDP relaxation does not giflex —Ppr = Var Y _(GirVai — BitVai)+Var D (BitVai + Gk Vi)

physically meaningful solutions to all OPF problems [2]. =1 =t (1n
The SDP relaxation of the OPF problem is computationally n n

limited by a positive semidefinite constraint on2a x 2n  Qar—Qor=Var »_ (GirVai — BirVai)—Var > (BirVai + Gik Vi)

matrix, wheren is the number of buses in the system. Thus, =t =t (19)

despite being provably polynomial time, the SDP relaxation ) .

is computationally challenging for large systems. Withergc A Solution to (1) consists of vectors of voltage phasers-

work in matrix completion decompositions that speed coni< +JVs, POWer injections” + j@, and Lagrange multipliers.

putation by exploiting power system sparsity, solution tu t We dgnote the ngrange multipliers assoqated wlth theage]t

SDP relaxation is feasible for large systems [3], [4]. magnitude equation (;d) as those associated ywth the_ active
However, solution of the SDP relaxation is still signifidgnt POWer balance equation (1) as those associated with the

slower than mature OPF algorithms, such as interior poif@ctive power balance equation (1ghaand those associated
with the apparent power line flow equation (1e)das
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the development of [1], lek, be the k' standard basis The second regards feasibility of tN& and A matrices. These
vector in R™. Define the matriced), = ekefY andY;,,, = matrices are feasible in the SDP relaxation if they are pesit
ity €16l = (yim) ercT,, whereby, is the line’s shunt semidefinite. The matritW = z2” is positive semidefinite

susceptancéy,., is the line’s series admittance, and superscriBﬁ*’ construction. Thus, the relevant feasibility conditien

T indicates the transpose operator. Define matrices A0 @
v, - L |Re (Ve +YT) Im (Y, —Y) 2a)
T2 {m (Y —YT)  Re (Vi +Y7) 1. DISCUSSION

Satisfaction of both (6) and (7) implies global optimal-

g __1|m (Vi +YT)  Re (Vi — YD) 20 np! :
k=79 [Re YT -Y;) Im (Y +Y7) ity regardless of the rank characteristics of thAe matrix
w0 (i.e., dim (null (A)) < 2 is not required). Non-zero branch
M, = [ 0 epel (2c) resistances, as necessary in [1], are not required. However
k . . enforcing small minimum branch resistances may resulttin sa
Y, = 1 {RO (Yim +Yy,) - Im (Y, = Yim) (2d) isfaction of (6) and (7) for problems that would not othemvis
2 [Im (Yim = Yi) - Re (Yim +Yy5,) satisfy these conditions.

. 1

_ 1 If either (6) or (7) is not satisfied, global optimality is
2

indeterminate. Failure to satisfy these conditions mayltes
Define the matrix variableW = 227 where = — When the semidefinite relaxation does not satisfy the rank

Vir -+ Vi Vg -+ an]T_ Formulate OPF problem (1) condition [2], in which case the solution may still be gldpal

in terms of W as in [1]: busk active and reactive power injec_optlmal but is not guaranteed to be so. Alternatively, failto

tions aretrace (Y, W) andtrace (ka) and squared voltage satisfy (6) an(_j (7) may indicate that a better solu_tion exis_t_
magnitude istrace (M, W); active and reactive flows on hen applied to the IEEE test systems [7] without mini-

line (1,m) are trace (Yi,, W) and trace (Ysz)- The SDp Mum resist.ancgs, glo_bal optimality of solutionfs.from MAT-
relaxation is formed by replacing the constraMt = zz7 POWER's interior point algorithm [5] was verified for the
with W = 0, wheres- 0 indicates positive semidefiniteness. 14 30, and 57-bus systems, but not for the 118 and 300-
The A matrix of the dual SDP problem, which collectddus system_s due to non—satlsfacuon_of . Wlth a minimum
terms of the optimality conditions as in [1], requires Lagga Pranch resistance of x 10~ per unit, the solution to the
multipliers in terms of the square of voltage magnitudest8-bus system (but not the 300-bus system) was verified to

(denoted ag) rather than the voltage magnitudes themselved€ globally optimal. Note that tight solution tolerancee ar
Use the chain rule of differentiation for the conversion often needed to obtain satisfactory numerical results.

(2e)

im —

Im (Yim +Yy7,) - Re (Yim = Yiy,)
Re (Y7, = Yim)  Im (Yim +Y/7)

Ek =tk (25 ) (3) IV. CONCLUSION

o Using the KKT conditions of a semidefinite relaxation of the
OPF problem, this letter has proposed a sufficient condition
Itest for global optimality of a candidate OPF solution.

where Vi, is the solution’s voltage magnitude at bus
Additionally, the solution to (1) gives line-flow limit Lagnge
multipliers ¢ in terms of apparent power (MVA), but the dual
SDP problem requires separate multipliers in terms of activ
and reactive power flows (denoted @asand 3, respectively).
Using the relationshib;,, = ,/Pﬁn + QZQm, where P,,,, and [1] J. Lavaei and S. Low, “Zero Duality Gap in Optimal Powerow!

. . . . Problem,”IEEE Transactions on Power Systemsl. 27, no. 1, pp. 92—
Q. are the active and reactive flows, respectively, on the line 107, February 2012,
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trace (AW) =0 (6)



